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Abstract—Unmanned aerial vehicles (UAVs) have been proposed
as a promising technology to collect data from IoT devices and
relay it to the network. In this work, we are interested in scenarios
where the data is updated periodically, and the collected updates
are time-sensitive. In particular, the data updates may lose their
value if they are not collected and analyzed timely. To maximize
the data freshness, we optimize a new performance metric, namely
the Age-of-Updates (AoU). Our objective is to carefully schedule
the UAVs hovering positions and the users’ association so that the
AoU is minimized. Unlike existing works where the association
parameters are considered as binary variables, we assume that
devices send their updates according to a probability distribution.
As a consequence, instead of optimizing a deterministic objective
function, the objective function is replaced by an expectation
over the probability distribution. The expected AoU is therefore
optimized under quality of service and energy constraints. The
original problem being non-convex, we propose an equivalent
convex optimization that we solve using an interior-point method.
Our simulation results show the performance of the proposed
approach against a binary association.

Index Terms—3D placements of UAVs, Age-of-Updates, Convex
optimization, Users’ association.

I. INTRODUCTION

In the last few years, unmanned aerial vehicles (UAVs)
have been considered for a variety of applications in the
telecommunications industry [1]. In particular, UAVs are used
as base stations to extend the network coverage in dense and
out-of-reach areas [2]. They are also deployed as data collectors
to relay information from Internet of Things (IoT) devices
to sink nodes [3]. In this work, we address the problem of
UAVs acting as data collectors. We are interested in the context
where the collected data is updated periodically and the data
updates are time-sensitive [4]. In particular, the data updates
may lose their meaning and value if they are not collected and
analyzed timely. As a consequence, it is important to carefully
design the UAV’s flight and stopping points so that the collected
updates are kept as fresh as possible. For this purpose, a new
performance metric, namely Age-of-Updates (AoU), has been
introduced. This metric captures the time since the last update
was collected. In this paper, we answer the question: How to
schedule the hovering locations of the drones and determine

the selected devices, from which the data is collected, so that
the total AoU is minimized?

A. Related Work

The majority of UAV-enabled networks research works fo-
cus on optimizing metrics such as the sum-rate and energy
efficiency [5]–[10]. For example, in [8], the authors design
the trajectory of a UAV to maximize the rate between a
drone and a ground base station. The authors consider the
limited energy of the drone, and the dynamic nature of the
communication channel. They decompose the problem into a
sequence of control optimizations that are solved using control
theory. Another example can be found in [9] where the authors
propose an energy-efficient drone control policy to ensure
efficient and fair communication coverage for IoT devices using
deep reinforcement learning.

However, only a handful of papers address the problem of
data timeliness in UAV-enabled networks. In [11], the authors
optimize a similar concept, called Age-of-Information (AoI).
AoI is defined as the time since the last relevant information
arrived at its destination. The objective of the work in [11] is
to optimize the data collection mode and the UAV trajectory
to reduce the average AoI of IoT devices. In the same context,
in [12], the authors propose a UAV trajectory planning to
minimize the maximum AoI of a UAV-enabled wireless sensor
network. Another work in [13] consists of optimizing the
service time allocation and the flight of a UAV used as a mobile
relay. The previously cited works are limited to a single drone
application and optimize only the 2D location of the drone,
ignoring the impact of its altitude.

The AoU has been introduced recently in the context of
federated learning (FL) [14]. An age measure of this type
has been shown to improve the notion of data freshness in a
variety of applications and has already been used, primarily
in the context of networking (see, for example, the study
in [15]). In [14], the authors propose a device scheduling
policy to maximize the parameters’ updates freshness, and
therefore, improve the accuracy of the FL model. The studied
problem is combinatorial. It involves mixed-integer and contin-
uous variables and it is solved using a decomposition method
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that addresses the channel allocation and devices association
subproblems separately.

In fact, UAV networks related optimizations are often for-
mulated as mixed-integer non-linear programming, where the
scheduling/association parameters are considered as binary
variables, whereas the positions of UAVs are modelled as
continuous variables. As a result, the optimization problems are
non-convex, most of the time NP-hard, and therefore, difficult
to solve. Moreover, the proposed algorithms are heuristics with
no performance guarantee and, in general, require a long time
to converge.

In our paper, we deal with the problem of AoU optimization
in UAV-assisted networks differently. We claim that, the binary
association constraint can be relaxed. The association variables
can be seen as probabilities. In particular, a user decides
whether to connect to a UAV or not based on a probability dis-
tribution. As a consequence, instead of optimizing a determin-
istic objective function, the objective function is replaced by an
expectation over the probability distribution. This approach has
two main advantages. First, it allows to formulate the problem
as a continuous optimization which can be solved numerically
with some guarantees on the final solution. Such an approach
can even result in continuous and convex problems which can
be solved efficiently using polynomial-time algorithms such as
interior-point methods [16]. Second, since the association is
probabilistic (i.e., a device decides to send its updates or not
by randomly drawing samples from a probability distribution),
it allows the participation of a large number of devices, which
leads to some fairness among devices.

B. Contribution

In this paper, we consider a UAV-assisted network, where
UAVs act as relays between IoT devices and a macro base
station (BS). Due to the limited communication and energy
resources, we assume that only a subset of IoT devices send
their updates to the UAVs. Similarly, only a subset of UAVs
interact with the BS to send the collected updates. The main
objective of this work is to schedule the UAVs’ hovering
locations and optimize the association probabilities (i.e., the
probabilities between IoT devices and UAVs, and between
UAVs and the BS) so that the collected updates are kept as fresh
as possible. The contributions of our paper are summarized as
follows.
• We formulate the joint association probabilities and 3D

locations problem as a non-linear programming (NLP) op-
timization where the objective is to minimize the expected
AoU under energy and quality of service constraints.

• To solve the underlying optimization efficiently, we pro-
pose a reformulation of the problem. We show that the new
formulation of the problem is convex. Hence, we propose
an interior-point based algorithm which provides a near-
optimal solution to the studied optimization.

• Finally, we validate our proposed approach with simula-
tion experiments. In particular, we show that the proposed

joint probability association and 3D position scheduling
outperforms a benchmark that adopts binary association.

C. Organization

The remainder of the paper is organized as follows. First,
the studied system model is described in Section II. The math-
ematical formulation of the problem is given in Section III. In
Section IV, we propose a convex reformulation of the problem.
In Section V, we describe the joint association probability and
3D locations to solve the underlying optimization efficiently.
Next, in Section VI, we show the performance of our algorithm
for various scenarios. Finally, concluding remarks are provided
in Section VII.

II. SYSTEM MODEL

A. Communication Model

We consider a set I of I IoT devices within an area A. The
IoT devices collect data from their surrounding environment
and send data updates periodically to a server located at the
BS. Since IoT devices have a limited communication range, a
set U of UAVs are deployed to collect data on a regular basis
from IoT devices and re-transmit it to the BS. An example of
the studied system model is illustrated in Fig. 1.

Fig. 1: System Model

We suppose that the IoT devices generate data updates that
are transmitted periodically. At the end of each time interval k
of duration τ (i.e., [kτ, (k + 1)τ ], with k ∈ K = {0, 1, . . . ,K},
and KT the time horizon), an IoT device i sends its data up-
dates to UAV u with some probability, which in turn transmits
the updates to the macro BS in the following time interval
k + 1 with another probability. Each UAV communicates with
both IoT devices and the BS via the air-to-ground channel. To
model the air-to-ground channel, we assume a Rician fading
distribution ∆̂i,u[k]

∆̂i,u[k] =

(√
Ω

Ω + 1
∆̄i,u[k] +

√
1

Ω + 1
∆̃i,u[k]

)
, (1)



where Ω is the Rician factor, ∆̄i,u[k] is the line-of-sight (LoS)
component with

∣∣∆̄i,u[k]
∣∣ = 1, and ∆̃i,u[k] the random non-

line-of-sight (NLoS) component where ∆̃i,u[k] ∼ CN (0, 1)
where CN (0, 1) is the complex normal distribution.

Each IoT device i transmits its updates with a power PD
i [k]

during time interval k. Thus, the received power at UAV u

is
∣∣∣∆̂i,u[k]

∣∣∣2 β0 (di,u[k])
−2
PD
i [k], where β0 is the average

channel power gain at a reference distance d0 = 1 m, and
di,u[k] is the distance between device i and UAV u during
time slot k,

di,u[k] = ‖qi − wu[k]‖2 , k = 1, 2, . . . ,K, (2)

where ‖.‖2 is the two-norm, qi = [xi, yi, 0] is the position
vector of IoT device i, and wu[k] = [xu[k], yu[k], hu[k]] is the
3D location vector of UAV u during time interval k.

The signal-to-noise ratio (SNR) of IoT device i with respect
to UAV u is given by

ΥD
i,u[k] = PD

i [k]
∣∣∣∆̂i,u[k]

∣∣∣2 β0 (di,u[k])
−2
/σ2, (3)

where σ2 is the thermal noise power. Therefore, the rate of IoT
device i when it is associated with UAV u during time slot k
can be written

RD
i,u[k] = ΛD

i,u[k] log2

(
1 + ΥD

i,u[k]
)
, (4)

where ΛD
i,u[k] is the allocated bandwidth between device i and

UAV u during time slot k.
Similarly, the rate of UAV u when it transmits the data

updates to the BS during time slot k is given by

RU
u [k] = ΛU

u [k] log2

(
1 + ΥU

u [k]
)
, (5)

where ΛU
u [k] is the bandwidth of UAV u during time slot k,

and ΥU
u [k] is the SNR of UAV u when it transmits to the BS

during time slot k which is given by

ΥU
u [k] = PU

u [k]
∣∣∣∆̂u[k]

∣∣∣2 β0 (du[k])
−2
/σ2, (6)

with PU
u [k] the transmit power of UAV u and du[k] the distance

between UAV u and the BS during time interval k.

B. Energy Consumption Model
Due to their limited battery budget, it is important to account

for the energy that a UAV consumes during its mission. In our
work, we account for three types of energy. First, the flying
energy, which is the energy to travel from one location to
another. Second, the hovering energy, which is the energy that
the UAV remains aloft and supports its movement. And finally,
the communication energy which is the transmission energy.
Accordingly, the total consumed energy by a UAV u during
time interval k is given by

Eu[k] = Ef
u [k] + Eh

u [k] + Ec
u[k]

= P f
u τ

f
u [k] + (Ph

u + PU
u [k])(τ − τfu [k]), (7)

where P f
u and Ph

u are the propulsion power of a rotary-wing
UAV and the hovering power respectively, that we assume
constant over time. τfu [k] is the time the UAV u makes to
travel from one location to another during time slot k, it is
given by τfu [k] = v−1 ‖wu[k]− wu[k + 1]‖2, where v is the
speed of the UAV that we assume constant.

C. Age-of-Updates Metric

The objective of this work is to maximize the total data
collected, while maximizing the freshness of the data and
ensure that its UAVs complete their misson. In particular, our
aim is to minimize the AoU.

Let Ai,u be the probabilistic event that IoT device i is
associated with UAV u. We denote by ai,u the probability that
Ai,u = 1. Also, let Bu be the probabilistic event that the UAV
u is selected by the BS and bu is the probability that Bu = 1.
More formally, we have:

Ai,u =

{
1, with probability ai,u
0, with probability 1− ai,u

Bu =

{
1, with probability bu
0, with probability 1− bu

To model the updates’ freshness, we use the same definition
as in [17]. Particularly, if device i is associated with UAV u
during time interval k, its AoU evolves as follows,

Ti,u[k + 1] = (Ti,u[k] + 1) (1−Ai,u[k]) , (8)

where Ti,u[0] = 0. Ti,u[k] is the age of the updates received
by drone u and collected from device i during time interval
k. Specifically, when the updates of device i are not collected
during time interval k (i.e., Ai,u[k] = 0), the AoU is increased
by one unit of time. Inversely, when the updates are transmitted,
the AoU is reinitialized to zero.

Therefore, the AoU of IoT devices whose data transit
through UAV u and is received by the BS is given by

Tu[k + 1] =

(∑
i∈I

Ti,u[k − 1]Ai,u[k − 1] + 1

)
(1−Bu[k]) .

(9)
Finally, the global AoU at the BS, during time interval k+1,

with k > 1, can be written

AoU [k+1] =
∑
u∈U

(∑
i∈I

(Ti,u[k − 1]Ai,u[k − 1] + 1) (1−Bu[k])

)
(10)

Due to the random behavior of events Ai,u and Bu, we target
to minimize the expected value of the global AoU as perceived
by the BS. In Lemma 1, we give the expression of the studied
metric.



E(AoU [k + 1]) = E

[∑
u∈U

∑
i∈I

(
(Ti,u[k − 1]Ai,u[k − 1] + 1) (1−Bu[k])

)]

= E

[∑
u∈U

∑
i∈I

(
Ti,u[k − 1]Ai,u[k − 1] + (1−Bu[k])− Ti,u[k − 1]Ai,u[k − 1]Bu[k]

)]

=
∑

u∈U
∑

i∈I

(
E
[
Ti,u[k − 1]Ai,u[k − 1]

]
+ E

[
(1−Bu[k])

]
− E

[
Ti,u[k − 1]Ai,u[k − 1]Bu[k]

])

=
∑

u∈U
∑

i∈I

(
Ti,u[k − 1]E

[
Ai,u[k − 1]

]
+

(
1− E

[
Bu[k]

])
− Ti,u[k − 1]E

[
Ai,u[k − 1]

]
E
[
Bu[k]

])
=
∑

u∈U
∑

i∈I (Ti,u[k − 1]ai,u[k − 1] + (1− bu[k])− Ti,u[k − 1]ai,u[k − 1]bu[k])

(11)

Lemma 1. Under the assumption that Ai,u[k] and Bu[k] are
independent for all k, u and i, the expected value of the global
AoU, during time interval k + 1 is given by

E(AoU [k + 1]) =
∑
u∈U

∑
i∈I

(Ti,u[k − 1]ai,u[k − 1] + (1− bu[k])

−Ti,u[k − 1]ai,u[k − 1]bu[k]) .
(12)

Proof. This expression is obtained by developing the AoU
and applying the properties of the expectation, as shown in
equation (11).

Next, we formulate the expected AoU optimization as a NLP.
Our target is to find the optimal probability association and
3D positioning of UAVs under energy and quality of service
constraints.

III. PROBLEM FORMULATION

In this section, we first describe the constraints of the studied
system. Then, we propose a mathematical formulation of the
problem.

First, to ensure that the updates are transmitted timely, it is
required that the expected uplink rate is above a predefined
threshold. Let R̄I and R̄U be the rate thresholds for IoT
devices and UAVs, respectively. As a consequence, the quality
of service constraints are expressed as follows

ai,u[k]RD
i,u[k] ≥ R̄I , ∀i ∈ I,∀k ∈ K (13)

bu[k]RU
u [k] ≥ R̄U , ∀u ∈ U ,∀k ∈ K. (14)

Additionally, UAVs must be able to accomplish their mission
without exceeding their energy budget Emax

u . Therefore, the
expected consumed energy should satisfy at each time slot the
following constraint

bu[k]Eu[k] ≤ Emax
u , ∀u ∈ U ,∀k ∈ K. (15)

Moreover, to avoid any collision between UAVs, we set a
minimum distance dmin between any two UAVs, thus

‖wu[k]− wv[k]‖2 ≥ dmin ∀u ∈ U , v ∈ U , u 6= v,∀k ∈ K.
(16)

Finally, our target is to optimize the expected AoU over time.
Therefore, the optimization problem is formulated as follows.

P : min
a,b,w

∑
k∈K

∑
u∈U

∑
i∈I

(Ti,u[k − 1]ai,u[k − 1] + (1− bu[k])−

Ti,u[k − 1]ai,u[k − 1]bu[k])
(17a)

s . t. (13)− (16) (17b)∑
u∈U

ai,u[k] ≤ 1, ∀i ∈ I,∀k ∈ K (17c)

0 ≤ ai,u[k] ≤ 1,∀i ∈ I, u ∈ U ,∀k ∈ K (17d)
0 ≤ bu[k] ≤ 1,∀u ∈ U ,∀k ∈ K (17e)
xumin ≤ xu[k] ≤ xumax,∀u ∈ U ,∀k ∈ K (17f)
yumin ≤ yu[k] ≤ yumax,∀u ∈ U ,∀k ∈ K (17g)
zumin ≤ zu[k] ≤ zumax,∀u ∈ U ,∀k ∈ K (17h)

where a and b are the association probability vectors and w
is the 3D position vector over time. In this formulation, the
constraint (17c) ensures that the association probabilities over
UAVs do not exceed 1. The constraints (17d) and (17e) ensure
that the probability vectors a and b are well-defined. Finally,
the constraints (17f), (17g) and (17h) restrict the movement of
the UAVs to a limited 3D space.

The Problem P includes only continuous variables, which
makes it a continuous non-linear and non-convex programming
problem. It is not convex, because constraints (13), (14) and
the objective function are not convex. In the next section, we
propose a convex reformulation of Problem P that can be
solved efficiently using methods of convex programming [16].

IV. A CONVEX REFORMULATION OF AOU OPTIMIZATION

In this section, we propose a new convex reformulation of
Problem P . For all k, to deal with the non-convexity factor
ai,u[k− 1]bu[k] in the objective function, we introduce a slack



variable tk = ai,u[k−1]bu[k]. Since tk is the multiplication of
two probabilities, it should be between 0 and 1. The objective
function using the new variables then becomes∑

k∈K

∑
u∈U

∑
i∈I

(Ti,u[k − 1]ai,u[k − 1] + (1− bu[k])−

Ti,u[k − 1]tk) ,

which is a linear function of the decision variables. The
following lemma deals with the non convexity of the constraint
(13). The constraint (14) is similar to (13), thus the same
reformulation applies.

Lemma 2. For each k ∈ K, the IoT device’s rate constraint
(13), can be rewritten as

e

(
R̄I

ai,u[k]ΛD
i,u

)
− 1

PD
i /σ

−2
∣∣∣∆̂i,u[k]

∣∣∣2 β0 − t1 ≤ 0, where (18)

1

(xu[k]− xi)2 + (yu[k]− yi)2 + (zu[k])2
− t1 = 0. (19)

The functions defining (18) and (19) are both convex.

Proof. After applying the exponential function, the constraint
(13) becomes

ΥD
i,u[k] ≥ e

(
R̄I

bu[k]ΛD
i,u

)
− 1,

where ΥD
i,u[k] = PD

i [k]
∣∣∣∆̂i,u[k]

∣∣∣2 β0σ−2 (di,u[k])
−2. Now, by

letting t1 = 1
(xu[k]−xi)2+(yu[k]−yi)2+(zu[k])2

, we get

e

(
R̄I

ai,u[k]ΛD
i,u

)
− 1

PD
i [k]/σ−2

∣∣∣∆̂i,u[k]
∣∣∣2 β0 − t1 ≤ 0.

Finally, note that the functions h1(x) = e
1
x , and h2(x) = 1

x2

are both convex.

Note all the remaining constraints in the definition of Prob-
lem P are convex.

Now that we showed the convex reformulation of Problem P .
In the next section, we outline the main steps of our proposed
approach to perform the Joint probability Association and 3D
position Scheduling (JAS) of IoT devices, UAVs and the BS.

V. JOINT PROBABILITY ASSOCIATION AND POSITION
SCHEDULING FOR AOU MINIMIZATION

Now that we have succeeded in getting a convex reformu-
lation of P , we use convex optimization methods to solve it
efficiently, namely the interior-point method.

After obtaining the optimal probabilities, in practice at each
time interval k, we use the procedure U2B to decide the

association between the UAVs and the BS, and I2U to decide
the association of IoT devices with the UAVs.

U2B procedure: Let b∗ be the optimal UAV-BS association
vector obtained by solving the convex optimization. To link
a given UAV u to the BS during time interval k, we draw a
random number between 0 and 1. If this number is lower than
the obtained optimal association probability bu[k]∗, UAV u is
associated with the BS during time interval k and therefore is
able to transmit the collected updates to the BS.

I2U procedure: Let a∗ be the optimal IoT device-UAV
association matrix obtained by solving the convex optimization
problem. We assume that during a time interval k, a device
i is allowed to send its updates to at most one UAV. The
question that arises here is how to select at most one UAV
according to the association probability vector a∗? For ease of
notations, we remove the dependency on k. The probability
selection vector of device i with respect to the UAVs is
given by a∗i = (a∗i,1, . . . , a

∗
i,U ). To pick at most one UAV

according to the probability vector a∗i , we construct a virtual
set of UAVs, where each UAV is represented according to
its probability of selection. For example, let U = 3 and
a∗i = (0.3, 0.2, 0.1). To select its associated UAV, device
i has to pick uniformly a random one UAV from the set
{UAV1,UAV1,UAV1,UAV2,UAV2,UAV3,UAV0,UAV0,
UAV0,UAV0} with UAV0 is a hypothetical UAV which simply
indicates that device i will not be associated during that time
interval.

Algorithm 1 summarizes the different steps of our approach.

Algorithm 1 Joint probability Association and position
Scheduling (JAS)

1: Input: The maximum energy budget: Emax
u ∀u ∈ U ,

the minimum IoT rate: R̄I , the minimum UAV rate: R̄U ,
the minimum distance between UAV: dmin. K number of
communication rounds.

2: Optimization: Solve the convex reformulation of Problem
P using a convex programming method, such as the
interior-point method, to obtain the optimal association
probabilities a∗ and b∗; and the optimal UAVs’ positions
over time.

3: Association:
4: while k ≤ K do
5: Associate IoT devices to UAVs using I2U procedure
6: Connect UAVs to BS using U2B procedure
7: k = k + 1

VI. SIMULATION RESULTS

To evaluate the performance of our approach, we consider
the following scenario. We assume K = 10, the number of
UAVs U = 4, the number of IoT devices I = 25, the speed
to v = 15m/s, the minimum distance between two UAVs
dmin = 15m, and a 3D area of 100×100×100m3. Initially, the



Fig. 2: Comparison between
JAS and Deterministic approach Fig. 3: Expected AoU over iterations Fig. 4: Energy consumption by each UAV

Fig. 5: UAV trajectory and association for
k = 5

UAVs are randomly scattered in the 3D space. We compare the
proposed approach with a deterministic approach similar to the
one proposed in [17].The results of this comparison are shown
in Fig. 2. As one may expect, our method gives a smaller
value of AoU when compared to the deterministic approach,
which in turn is better than a random feasible solution of the
optimization problem.

In Fig. 3, we plot the objective value over iterations. As
the plot shows, the value of the function decreases over the
iterations until it reaches the optimum.

Fig. 4 shows the energy consumed by each UAV against their
maximum energy. We can see that none of the UAVs exceeded
their energy limits.

In Fig. 5, we plot the UAVs trajectory and the associations
for the last time interval k = 5. In this figure, we show the
3D positioning of the UAVs as well as the trajectory followed
by each UAV from k = 1 to k = 5. We also represent the
associations between each UAV and the IoT devices as well
as the UAVs selected by the BS for transmission during the
last time interval. We can notice that, the UAVs try to position
themselves in order to communicate well with the IoT devices
and the BS. We can also see that most of the IoT devices are
served by the UAVs.

VII. CONCLUSION

In this paper, we consider the optimization of the expected
AoU in a UAV-assisted network. Our objective is to find
the optimal 3D location scheduling and the probabilities of
association between the IoT devices, the UAVs, and the BS. We
first formulate the problem as a non-linear programming. Then,
we propose a convex reformulation of the studied optimization.
We solve the convex optimization using an interior-point based
algorithm. Finally, we show that the proposed approach outper-
forms the benchmark algorithm.
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